

PRIORITY FREQUENCY MAPTABLE FOR QUERY OPTIMIZATION

USING MATERIALIZED VIEWS

MD. RAFIQUL ISLAM, MORSHED U. CHOWDHURY
School of Information Technology, Deakin University, Victoria, Australia 3125

{rmd, muc} @deakin.edu.au

ABSTRACT

In this paper query optimization using materialized
views has been analyzed and a comprehensive and
efficient technique has been proposed to create
Map-table. Materialized views can provide massive
improvements in query processing time, especially
for aggregation queries over large tables. To realize
this potential, a number of existing techniques have
been considered regarding the problem of
maintaining materialized views as well as optimal
searching time and memory overhead. Keeping this
in mind, an optimal algorithm has been proposed in
this paper for query optimization. It has been
demonstrated that the proposed algorithm reduces
the searching time substantially and reducing the
memory size as well.

KEY WORDS

Materialized Views, MapTable, Query
Optimization, Priority Frequency Table.

1.0 INTRODUCTION

When a view is defined, normally the database
stores only the query defining the view. In
contrast, a materialized view is a view whose
contents are computed and stored. Materialized
views constitute redundant data, in that their
contents can be inferred from the view definition
and the rest of the database contents. However it is
much cheaper in many cases to read the contents of
materialized view than to compute the contents of
the view by executing the query defining the view.
However a problem with materialized views is that
they must be kept up-to-date when the data used in
the view definition changes. Otherwise the
materialized view becomes inconsistent. The task of
keeping a materialized view up-to-date with the
underlying data is known as view maintenance.

It may seem that materialized views should be used
to evaluate a query whenever they are applicable.
Also there are problems in the optimization of
queries in the presence of a materialized view. In
fact, blind applications of materialized views may
result in significantly worse plans compared to
alternative plans that do not use any materialized
views. Whether the use of materialized views will
result in a better or a worse plan depends on the

query and the statistical properties of the database.
Since queries are often generated using tools and
since the statistical property of databases are time-
varying, it should be the responsibility of the
optimizer to consider the alternative execution
plans and to make a cost-based decision whether or
not to use materialized views to answer a given
database. Such enumeration of the possible
alternatives by the optimizer must be syntax
independent and efficient. By syntax independent,
we mean that the set of alternatives enumerated by
the optimizer (and hence the choice of the optimal
execution plan) should not depend on whether or
not the query explicitly references materialized
views. Thus the optimizer must be capable of
considering the alternatives implied by materialized
view. In particular, a materialized views may need
to be considered even if the view is not directly
applicable (i.e., there is no sub expressions in the
query that syntactically matches the view). Also,
more than one materialized views may be relevant
for the given query. In such cases, the optimizer
must avoid incorrect alternatives where mutually
exclusive compatible views are used together while
considering use of mutually compatible views.

The idea of query optimization using a materialized
view is a new concept in the present research
world. To speed up view matching, descriptions of
every materialized view have been maintained in
memory. To keep the description of a materialized
view in memory, the concept of MapTable [1] was
introduced. For keeping the description of every
materialized view in memory, a data-structure
called MapTable is implemented. MapTable keeps
the information about queries equivalent to the
given one.

Basically the MapTable is divided into two parts.
The left part contains the name of the view and the
right part contains the body of the view. For a
given query we try to find any sub expression that
matches with the left part of the MapTable. Then
we just replace the matched sub expression with the
right part of the MapTable that is connected to the
name of the materialized view. That is we can use a
materialized view just like a base table [6].

There is a traditional cost based query optimization
algorithm called join enumeration algorithm, which
is a simplification and abstraction of the algorithm

proposed by [9]. Using the algorithm of MapTable
an extended algorithm for query optimization was
proposed by [4]. This algorithm performs better
than the [9]. However the existing MapTable
creation algorithms [4,9] has some limitations. To
eliminate the drawbacks of the existing algorithms,
a new version of the algorithm of creating
MapTable is proposed. The proposed algorithm not
only optimizes the searching time but also reduces
the memory overhead compare to any of the
existing techniques.

2.0 THE CONCEPT OF MAPTABLE

Intuitively, each safe substitution [1] results in a
new query, equivalent to the given one. We encode
the equivalent queries by storing the information
about safe substitutions in the MapTable data
structure.

From the definition of safe substitution, it follows
that every safe substitution of a query Q with
respect to a rule L (x, y) V (x) corresponds to a
renaming σ for the rule. Therefore, we can encode
the information about a safe substitution by the
doublet [σ(L), σ(V)]. The first component in the
doublet is called the delete list and the second
component in the doublet is called the AddLiteral.
The delete list denotes the sub expression in the
query that is replaced due to the safe substitution σ
and the AddLiteral denotes the literal that replaces
delete list. Since L may have more than one literal,
the delete list is a set of literals

However, AddLiteral is a single literal. The
algorithm to construct the MapTable for a given
query is shown in Algorithm 1. The last for loop
iterates over all literals in the query.

ALGORITHM 1: CREATING THE
MAPTABLE

Procedure MakeMapTable(Q,R)
 begin
 Initialize MapTable
 for each rewrite rule r : L.→ V in R do
 for each safe substitution σ from r to Q do
 MapTable:= MapTable ∪ [σ(L), σ(V)]
 endfor
 endfor
 for each literal q ∈ Q do
 MapTable := MainTable ∪,[{ q},q]
 endfor
 end

EXAMPLE 2.1

Consider the following one-level rewrite rule for
Large-Dept

Dept (dno, size, loc), size >30→Large_Dept
(dno,Loc)

We illustrate the enumeration of substitutions using
three materialized views such as Large_Dept,
Loc_Emp and Executive.

1) Consider the following query, which asks for
employees who work at a department in SF.

 Query(name): -Emp(name, doe, sat, age), size > 30
 Dept (dno, size, SF)

It can be seen that the MapTable will have the
following two doublets.

 ({Dept (dno, size, SF), size > 30},
 Large-Dept(dno, SF)
 ({Emp(name,dno, sal, age), Dept(dno, size, SF)},
 Loc_Emp(name, size, SF))

Observe that the doublets correspond to materialize
views that are mutually exclusive.

2) Consider the query to find employees who earn
more than 200000 and work in departments with
more than 30 employees.

Q'(name) : -Emp(name, dno, sal, age) , sal > 200k,
 Dept(dno, size, loc), size > 30

It can be seen that the MapTable will have the
following two doublets which correspond to
applications of mutually compatible materialized
views.
 ({Emp(name, dno, sat, age) , sat > 200k},
 Executive(name , dno, sal))
 ({Dept(dno,size, loc), size > 30},
 Large_Dept (dno, loc))

Notice that these two doublets implicitly represent
the alternatives to the given query.

3.0 LIMITATIONS OF THE

EXISTING ALGORITHM

In this section, some limitations of the existing
algorithm of creating a MapTable have been
summarized. These are:

1. The main limitations of the concept of MapTable

mentioned above is the storage problem. In this
existing method, when a view is declared its entry
is just appended to the MapTable. Therefore, that
the size of the MapTable grows gradually as the
number of views increases. When a view comes
as an input there is no method of checking if the
input view already exists in the MapTable or not.
Therefore, duplicated data may be entered into
the MapTable.

2. In this existing method there is no restriction on
the size of the Maptable. Therefore it may keep
some entries that are not necessary, thus
wasting memory.

3. For a given query it tries to find any sub
expression that matches with the left part of the
MapTable, and then replacing the matched sub
expression with the right part of the MapTable
that is with the name of the materialized view.
For this reason it has to search the entry of the
MapTable. Here the search time is higher than
the proposed algorithm.

4.0 THE PROPOSED ALGORITHM

To eliminate the drawback of the existing algorithm
of creating MapTable, a new algorithm for creating
the MapTable has been proposed based on “priority
of frequency”, i.e. the algorithm will count the
frequency of each entry. It has been shown that the
proposed algorithm for creating the MapTable will
provide significant performance improvements
over the previous algorithm for creating the
MapTable. The main techniques of the proposed
algorithm for creating the MapTable are as follows:

1. Keeping a frequency count for each entry in

the MapTable.
2. For a given view, if it matches any entry in the

existing MapTable, then we increase the
frequency of the existing view by 1 and sort
the MapTable.

3. For a given view, if it does not match any entry
in the MapTable, and if there is enough free
space within a given restriction, i.e. limit of
MapTable, and then just append the view to
the MapTable.

4. For a given view, if the MapTable is full, then
replace the view with the lowest frequency by
the given view.

ALGORITHM 2: PROPOSED

ALGORITHM FOR CREATING
THE MAPTABLE

Procedure MapTable (Q,R)

 Begin
 Input View (Q)
 Initialize MapTable
 for each rewrite rule r : L→ V in R do
 for each safe substitution σ from r to Q

 do {
 If (Q matches with any View
 in the MapTable)
 Then (Increase the Frequency of

the existing View by 1 and Sort (MapTable
))

 Else If (There is a free space in the
MapTable)

 Then (MapTable: = (MapTable ∪ [σ(L),
σ(V)] with frequency 1)

 Else (Replace the View having lowest
frequency with this new one)
 }
end for

 end

5.0 A COMPARATIVE STUDY

In proposed algorithm (Algorithm 2) of creating
MapTable keeps frequency of each view in the
MapTable. Also the MapTable always keep sorted
by frequency. So, most of the necessary
materialized view, that is the materialized view
with higher frequency, will remain in the upper of
the MapTable. Also another checking has been kept
in the proposed algorithm of creating MapTable is
that, if the input materialized view already existed
in the MapTable then it will not append in the
MapTable, rather just increase the frequency of the
existing materialized view in the MapTable. So
there is no chance of duplicity here. But in the case
of the previous algorithm (Algorithm 1) of creating
MapTable, does not keep any frequency if an input
comes just append the input in the MapTable. So
there may be duplicate data in the MapTable as
well as data are not sorted. The algorithm is
simulated and materialized view searching time is
calculated. After simulation the following data are
found and a graph is drawn. [Table 1, Figure 1]

In the existing method when a view is declared its
entry is just append to the MapTable. Thais is why
the size of the MapTable grows gradually as the
number of views increases. Also it may insert
duplicated data as there is no method of checking if
the input view already exists in the MapTable.
However in the case of the proposed algorithm this
checking is done, so there is no chance of inserting
duplicate data. Further more in the proposed
algorithm, the size of the MapTable is fixed, based
on the properties of the database. Let the size of the
proposed algorithm for creating the MapTable be
15. Now the memory size of the MapTable will not
increase beyond 15. Here a graph is presented for
supporting the above discussion. [Table 2, Figure
2]

6. 0 DISCUSSIONS

A comprehensive approach for solving the problem
of query optimization in the presence of
Materialized views has been proposed.
Materialized views may result in significantly
worse plans compared to alternative plans that do
not use any Materialized views. In this paper the
materialized view has been proposed as like as base
table. To keep the information of the materialized
view a data-structure is encoded called Maptable. It
has been analyzed using existing techniques and
some limitations for creating Maptable have been
found. Keeping this in mind, a new algorithm is
proposed for creating the Maptable using “priority
of frequency “. It has been demonstrated that the
proposed algorithm performs better with respect to
searching time, as well as memory overhead,
compared to any of the existing techniques.

References
[1.] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros

Potamianos, Kyuseok Shim “Optimizing
Queries with Materialized Views.” ICDE 1995:
190-200

[2.] Jonathan Goldstein and Per-Ake Larson.
“Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution”. Microsoft
Research, One Microsoft Way, Redmond, WA
98052

[3.] Surajit Chaudhuri and Kyuseok Shim
“Optimizing Queries with Aggregate Views”
Hewlett-Packard Laboratories, 1501 Page Mill

Road, Palo Alto, CA 943043 USA. IBM
Almaden Research Center, 650 Harry Road,
San Jose, CA 95120, USA

[4.] Huyn, N “Speeding Up Materialized-View
Maintenance Using Cheap Filters at the
Warehouse.” Technical Report, Surromed, Inc.
1999.

[5.] Hoshi Mistry , Prasan Roy , S. Sudarshan ,
Krithi Ramamritham “Materialized View
Selection and Maintenance Using MultiQuery
Optimization” IIT-Bombay, Bell Labs, Univ. of
Massachusetts-Amherst, 2000.

[6.] P.O. Bunernan and E.K. Clemons “Efficiently
monitoring relational databases” ACM TODS,
4(3):368-382, 1979.

[7.] J.A. Blakeley, P. A. Larson, and F. W. Tompa
“Efficiently updating materialized views” In
Proceedings of the ACM SIGMOD Conference
on the Management of Data, pages 61-71,
Washington, DC, May 1986.

[8.] U. S. Chakravarthy, J. Grant, and J. Minker
“Logic-based approach to semantic query
optimization” ACM Transactions on Database
Systems, pages 162-207, June 1990.

[9.] T. Cormen, C. Leiserson, and R.L Rivest.
“Introduction to Algorithms” The MIT Press,
1990.

[10.] A. Chandra and P.M. Merlin “Optimal
implementation of conjunctive queries in
relational databases” In Proceedings of the 9th
Symposium on Theory of Computing, pages 77-
90, New York, August 1977.

TABLE 1: COMPARISON OF SEARCHING TIME IN (MICROSECONDS) BETWEEN EXISTING
SYSTEMS AND PROPOSED SYSTEM.

Number Of

Materialized Views
Searching Time In (Microseconds) In

Existing System
Searching Time in (μs) in

Proposed System
100 22 15
200 115 74
300 183 127
400 239 175
500 318 230

 FIGURE 1: SEARCHING TIME COMPARISON BETWEEN EXISTING AND PROPOSED SYSTEM.

0

50

100

150

200

250

300

350

100 200 300 400 500

N u m b er o f v iew s

V
ie

w
 se

ar
ch

in
g

tim
e(

in
 m

ic
ro

se
co

nd
s)

P roposed sys tem
E xis ting sys tem

TABLE 2: MEMORY SIZE COMPARISON BETWEEN EXISTING SYSTEM AND PROPOSED SYSTEM.

Number Of Views Memory Size For
Existing System

Memory Size For
Proposed System

100 5 4
200 10 8
300 15 13
400 20 15
500 25 15

 FIGURE 2: MEMORY SIZE COMPARISON BETWEEN EXISTING AND PROPOSED SYSTEM.

0

100

200

300

400

500

600

5 10 15 20 25

Memory size

N
um

ber of view
s

Existing system
Proposed system

